Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Bus Res ; 156: 113480, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2131353

ABSTRACT

Vaccination offers health, economic, and social benefits. However, three major issues-vaccine quality, demand forecasting, and trust among stakeholders-persist in the vaccine supply chain (VSC), leading to inefficiencies. The COVID-19 pandemic has exacerbated weaknesses in the VSC, while presenting opportunities to apply digital technologies to manage it. For the first time, this study establishes an intelligent VSC management system that provides decision support for VSC management during the COVID-19 pandemic. The system combines blockchain, internet of things (IoT), and machine learning that effectively address the three issues in the VSC. The transparency of blockchain ensures trust among stakeholders. The real-time monitoring of vaccine status by the IoT ensures vaccine quality. Machine learning predicts vaccine demand and conducts sentiment analysis on vaccine reviews to help companies improve vaccine quality. The present study also reveals the implications for the management of supply chains, businesses, and government.

2.
6th International Conference on Intelligent Computing and Control Systems, ICICCS 2022 ; : 254-259, 2022.
Article in English | Scopus | ID: covidwho-1922679

ABSTRACT

As COVID-19 has transformed into a pandemic, the pollution, disasters, and ramifications for the economy have turned out to be indisputable. Sensible systems ought to be used to evaluate the money related impact of future disease guides to restrict fear and dubiousness about COVID-19 pandemic's monetary impact. Gotten from Epidemics already (like influenza) and monetary examples, this assessment gathered a plague affliction evaluation framework and a money related circumstance estimate model. Using this methodology, the author moreover guesses the monetary aftereffects of future COVID-19 spread. The disclosures of the audit are according to the accompanying. In any case, the significant learning-based monetary effect assumption model was attempted with really look at data to ensure that it actually expected development rates by percent. Second, that used a significant learning-based compelling disease money related impact estimate model, the makers present the COVID- 19 example and future financial effect assumption results for the looming year. At the present time, a large portion of COVID- 19 assessment is on method for managing drug spread using quantifiable mathematical estimations. This work will be used as a definite reference for compelling and preventive bearing by expecting the spread of diseases and monetary issues related with COVID-19 using significant learning advancement and credible overpowering ailment data. © 2022 IEEE.

3.
10th International Conference on Advances in Computing and Communications, ICACC 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1741182

ABSTRACT

It's been more than a year since the world is struggling with the COVID-19 pandemic. Mutation of the virus leads to a new wave of infection in a lot of countries. The virus has a very high spreading rate, so all the infected patients won't be able to treat in the hospitals and chances of it spreading among healthcare workers is also high. So we propose a system to monitor COVID-19 patients undergoing quarantine from their own homes during the pandemic, so as to save the hospital bed spaces for the patients with a critical health condition, who need immediate medical attention. The proposed system helps us to avoid overcrowding in hospitals and thereby avoiding the spreading of the virus from highly infected patients to the unaffected individuals. The methodology utilizes LSTM model which is a recurrent neural network (RNN) architecture used in the field of deep learning. © 2021 IEEE.

4.
Results Phys ; 27: 104495, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1525938

ABSTRACT

The first known case of Coronavirus disease 2019 (COVID-19) was identified in December 2019. It has spread worldwide, leading to an ongoing pandemic, imposed restrictions and costs to many countries. Predicting the number of new cases and deaths during this period can be a useful step in predicting the costs and facilities required in the future. The purpose of this study is to predict new cases and deaths rate one, three and seven-day ahead during the next 100 days. The motivation for predicting every n days (instead of just every day) is the investigation of the possibility of computational cost reduction and still achieving reasonable performance. Such a scenario may be encountered in real-time forecasting of time series. Six different deep learning methods are examined on the data adopted from the WHO website. Three methods are LSTM, Convolutional LSTM, and GRU. The bidirectional extension is then considered for each method to forecast the rate of new cases and new deaths in Australia and Iran countries. This study is novel as it carries out a comprehensive evaluation of the aforementioned three deep learning methods and their bidirectional extensions to perform prediction on COVID-19 new cases and new death rate time series. To the best of our knowledge, this is the first time that Bi-GRU and Bi-Conv-LSTM models are used for prediction on COVID-19 new cases and new deaths time series. The evaluation of the methods is presented in the form of graphs and Friedman statistical test. The results show that the bidirectional models have lower errors than other models. A several error evaluation metrics are presented to compare all models, and finally, the superiority of bidirectional methods is determined. This research could be useful for organisations working against COVID-19 and determining their long-term plans.

5.
Array (N Y) ; 11: 100085, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363877

ABSTRACT

COVID-19 is a pandemic disease that began to rapidly spread in the US, with the first case detected on January 19, 2020, in Washington State. March 9, 2020, and then quickly increased with total cases of 25,739 as of April 20, 2020. Although most people with coronavirus 81%, according to the U.S. Centers for Disease Control and Prevention (CDC), will have little to mild symptoms, others may rely on a ventilator to breathe or not at all. SEIR models have broad applicability in predicting the outcome of the population with a variety of diseases. However, many researchers use these models without validating the necessary hypotheses. Far too many researchers often "overfit" the data by using too many predictor variables and small sample sizes to create models. Models thus developed are unlikely to stand validity check on a separate group of population and regions. The researcher remains unaware that overfitting has occurred, without attempting such validation. In the paper, we present a combination algorithm that combines similar days features selection based on the region using Xgboost, K-Means, and long short-term memory (LSTM) neural networks to construct a prediction model (i.e., K-Means-LSTM) for short-term COVID-19 cases forecasting in Louisana state USA. The weighted k-means algorithm based on extreme gradient boosting is used to evaluate the similarity between the forecasts and past days. The results show that the method with K-Means-LSTM has a higher accuracy with an RMSE of 601.20 whereas the SEIR model with an RMSE of 3615.83.

6.
Comput Struct Biotechnol J ; 19: 2833-2850, 2021.
Article in English | MEDLINE | ID: covidwho-1240272

ABSTRACT

The worldwide health crisis caused by the SARS-Cov-2 virus has resulted in>3 million deaths so far. Improving early screening, diagnosis and prognosis of the disease are critical steps in assisting healthcare professionals to save lives during this pandemic. Since WHO declared the COVID-19 outbreak as a pandemic, several studies have been conducted using Artificial Intelligence techniques to optimize these steps on clinical settings in terms of quality, accuracy and most importantly time. The objective of this study is to conduct a systematic literature review on published and preprint reports of Artificial Intelligence models developed and validated for screening, diagnosis and prognosis of the coronavirus disease 2019. We included 101 studies, published from January 1st, 2020 to December 30th, 2020, that developed AI prediction models which can be applied in the clinical setting. We identified in total 14 models for screening, 38 diagnostic models for detecting COVID-19 and 50 prognostic models for predicting ICU need, ventilator need, mortality risk, severity assessment or hospital length stay. Moreover, 43 studies were based on medical imaging and 58 studies on the use of clinical parameters, laboratory results or demographic features. Several heterogeneous predictors derived from multimodal data were identified. Analysis of these multimodal data, captured from various sources, in terms of prominence for each category of the included studies, was performed. Finally, Risk of Bias (RoB) analysis was also conducted to examine the applicability of the included studies in the clinical setting and assist healthcare providers, guideline developers, and policymakers.

7.
Energy (Oxf) ; 227: 120455, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1174218

ABSTRACT

Due to lockdown measures taken by the UK government during the Coronavirus disease 2019 pandemic, the national electricity demand profile presented a notably different performance. The Coronavirus disease 2019 crisis has provided a unique opportunity to investigate how such a landscape-scale lockdown can influence the national electricity system. However, the impacts of social and economic restrictions on daily electricity demands are still poorly understood. This paper investigated how the UK-wide electricity demand was influenced during the Coronavirus disease 2019 crisis based on multivariate time series forecasting with Bidirectional Long Short Term Memory, to comprehend its correlations with containment measures, weather conditions, and renewable energy supplies. A deep-learning-based predictive model was established for daily electricity demand time series forecasting, which was trained by multiple features, including the number of coronavirus tests (smoothed), wind speed, ambient temperature, biomass, solar & wind power supplies, and historical electricity demand. Besides, the effects of Coronavirus disease 2019 pandemic on the Net-Zero target of 2050 were also studied through an interlinked approach.

8.
Chaos Solitons Fractals ; 140: 110212, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-720454

ABSTRACT

COVID-19, responsible of infecting billions of people and economy across the globe, requires detailed study of the trend it follows to develop adequate short-term prediction models for forecasting the number of future cases. In this perspective, it is possible to develop strategic planning in the public health system to avoid deaths as well as managing patients. In this paper, proposed forecast models comprising autoregressive integrated moving average (ARIMA), support vector regression (SVR), long shot term memory (LSTM), bidirectional long short term memory (Bi-LSTM) are assessed for time series prediction of confirmed cases, deaths and recoveries in ten major countries affected due to COVID-19. The performance of models is measured by mean absolute error, root mean square error and r2_score indices. In the majority of cases, Bi-LSTM model outperforms in terms of endorsed indices. Models ranking from good performance to the lowest in entire scenarios is Bi-LSTM, LSTM, GRU, SVR and ARIMA. Bi-LSTM generates lowest MAE and RMSE values of 0.0070 and 0.0077, respectively, for deaths in China. The best r2_score value is 0.9997 for recovered cases in China. On the basis of demonstrated robustness and enhanced prediction accuracy, Bi-LSTM can be exploited for pandemic prediction for better planning and management.

SELECTION OF CITATIONS
SEARCH DETAIL